
_ ________________________________________________________________________________________________________________________________________________________________ _______________________________________

2
_ ________________________________________________________________________________________________________________________________________________________________ _______________________________________

A Tour of C+ +

The first thing we do, let´s
kill all the language lawyers.

– Henry VI, part II

What is C++? — programming paradigms — procedural programming — modularity —
separate compilation — exception handling — data abstraction — user-defined types —
concrete types — abstract types — virtual functions — object-oriented programming —
generic programming — containers — algorithms — language and programming —
advice.

2.1 What is C++?

C++ is a general-purpose programming language with a bias towards systems programming that
– is a better C,
– supports data abstraction,
– supports object-oriented programming, and
– supports generic programming.

This chapter explains what this means without going into the finer details of the language defini-
tion. Its purpose is to give you a general overview of C++ and the key techniques for using it, not
to provide you with the detailed information necessary to start programming in C++.

If you find some parts of this chapter rough going, just ignore those parts and plow on. All will
be explained in detail in later chapters. However, if you do skip part of this chapter, do yourself a
favor by returning to it later.

Detailed understanding of language features – even of all features of a language – cannot com-
pensate for lack of an overall view of the language and the fundamental techniques for using it.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



22 A Tour of C++ Chapter 2

2.2 Programming Paradigms

Object-oriented programming is a technique for programming – a paradigm for writing ‘‘good’’
programs for a set of problems. If the term ‘‘object-oriented programming language’’ means any-
thing, it must mean a programming language that provides mechanisms that support the object-
oriented style of programming well.

There is an important distinction here. A language is said to support a style of programming if
it provides facilities that make it convenient (reasonably easy, safe, and efficient) to use that style.
A language does not support a technique if it takes exceptional effort or skill to write such pro-
grams; it merely enables the technique to be used. For example, you can write structured programs
in Fortran77 and object-oriented programs in C, but it is unnecessarily hard to do so because these
languages do not directly support those techniques.

Support for a paradigm comes not only in the obvious form of language facilities that allow
direct use of the paradigm, but also in the more subtle form of compile-time and/or run-time checks
against unintentional deviation from the paradigm. Type checking is the most obvious example of
this; ambiguity detection and run-time checks are also used to extend linguistic support for para-
digms. Extra-linguistic facilities such as libraries and programming environments can provide fur-
ther support for paradigms.

One language is not necessarily better than another because it possesses a feature the other does
not. There are many examples to the contrary. The important issue is not so much what features a
language possesses, but that the features it does possess are sufficient to support the desired pro-
gramming styles in the desired application areas:

[1] All features must be cleanly and elegantly integrated into the language.
[2] It must be possible to use features in combination to achieve solutions that would otherwise

require extra, separate features.
[3] There should be as few spurious and ‘‘special-purpose’’ features as possible.
[4] A feature’s implementation should not impose significant overheads on programs that do

not require it.
[5] A user should need to know only about the subset of the language explicitly used to write a

program.
The first principle is an appeal to aesthetics and logic. The next two are expressions of the ideal of
minimalism. The last two can be summarized as ‘‘what you don’t know won’t hurt you.’’

C++ was designed to support data abstraction, object-oriented programming, and generic pro-
gramming in addition to traditional C programming techniques under these constraints. It was not
meant to force one particular programming style upon all users.

The following sections consider some programming styles and the key language mechanisms
supporting them. The presentation progresses through a series of techniques starting with procedu-
ral programming and leading up to the use of class hierarchies in object-oriented programming and
generic programming using templates. Each paradigm builds on its predecessors, each adds some-
thing new to the C++ programmer’s toolbox, and each reflects a proven design approach.

The presentation of language features is not exhaustive. The emphasis is on design approaches
and ways of organizing programs rather than on language details. At this stage, it is far more
important to gain an idea of what can be done using C++ than to understand exactly how it can be
achieved.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.3 Procedural Programming 23

2.3 Procedural Programming

The original programming paradigm is:

Decide which procedures you want;
use the best algorithms you can find.

The focus is on the processing – the algorithm needed to perform the desired computation. Lan-
guages support this paradigm by providing facilities for passing arguments to functions and return-
ing values from functions. The literature related to this way of thinking is filled with discussion of
ways to pass arguments, ways to distinguish different kinds of arguments, different kinds of func-
tions (e.g., procedures, routines, and macros), etc.

A typical example of ‘‘good style’’ is a square-root function. Given a double-precision
floating-point argument, it produces a result. To do this, it performs a well-understood mathemati-
cal computation:

d do ou ub bl le e s sq qr rt t(d do ou ub bl le e a ar rg g)
{

/ / code for calculating a square root
}

v vo oi id d f f()
{

d do ou ub bl le e r ro oo ot t2 2 = s sq qr rt t(2 2) ;
/ / ...

}

Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function
bodies. The double slash, / /, begins a comment that extends to the end of the line. The keyword
v vo oi id d indicates that a function does not return a value.

From the point of view of program organization, functions are used to create order in a maze of
algorithms. The algorithms themselves are written using function calls and other language facili-
ties. The following subsections present a thumb-nail sketch of C++’s most basic facilities for
expressing computation.

2.3.1 Variables and Arithmetic

Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

i in nt t i in nc ch h;

specifies that i in nc ch h is of type i in nt t; that is, i in nc ch h is an integer variable.
A declaration is a statement that introduces a name into the program. It specifies a type for that

name. A type defines the proper use of a name or an expression.
C++ offers a variety of fundamental types, which correspond directly to hardware facilities. For

example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



24 A Tour of C++ Chapter 2

b bo oo ol l / / Boolean, possible values are true and false
c ch ha ar r / / character, for example, ’a’, ’z’, and ’9’
i in nt t / / integer, for example, 1, 42, and 1216
d do ou ub bl le e / / double-precision floating-point number, for example, 3.14 and 299793.0

A c ch ha ar r variable is of the natural size to hold a character on a given machine (typically a byte), and
an i in nt t variable is of the natural size for integer arithmetic on a given machine (typically a word).

The arithmetic operators can be used for any combination of these types:

+ / / plus, both unary and binary
- / / minus, both unary and binary
* / / multiply
/ / / divide
% / / remainder

So can the comparison operators:

== / / equal
!= / / not equal
< / / less than
> / / greater than
<= / / less than or equal
>= / / greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions between the
basic types so that they can be mixed freely:

v vo oi id d s so om me e_ _f fu un nc ct ti io on n() / / function that doesn’t return a value
{

d do ou ub bl le e d d = 2 2.2 2; / / initialize floating-point number
i in nt t i i = 7 7; / / initialize integer
d d = d d+i i; / / assign sum to d
i i = d d*i i; / / assign product to i

}

As in C, = is the assignment operator and == tests equality.

2.3.2 Tests and Loops

C++ provides a conventional set of statements for expressing selection and looping. For example,
here is a simple function that prompts the user and returns a Boolean indicating the response:

b bo oo ol l a ac cc ce ep pt t()
{

c co ou ut t << "D Do o y yo ou u w wa an nt t t to o p pr ro oc ce ee ed d (y y o or r n n)?\ \n n"; / / write question

c ch ha ar r a an ns sw we er r = 0 0;
c ci in n >> a an ns sw we er r; / / read answer

i if f (a an ns sw we er r == ́ y y´) r re et tu ur rn n t tr ru ue e;
r re et tu ur rn n f fa al ls se e;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.3.2 Tests and Loops 25

The << operator (‘‘put to’’) is used as an output operator; c co ou ut t is the standard output stream. The
>> operator (‘‘get from’’) is used as an input operator; c ci in n is the standard input stream. The type of
the right-hand operand of >> determines what input is accepted and is the target of the input opera-
tion. The \ \n n character at the end of the output string represents a newline.

The example could be slightly improved by taking an ‘n’ answer into account:

b bo oo ol l a ac cc ce ep pt t2 2()
{

c co ou ut t << "D Do o y yo ou u w wa an nt t t to o p pr ro oc ce ee ed d (y y o or r n n)?\ \n n"; / / write question

c ch ha ar r a an ns sw we er r = 0 0;
c ci in n >> a an ns sw we er r; / / read answer

s sw wi it tc ch h (a an ns sw we er r) {
c ca as se e ´y y´:

r re et tu ur rn n t tr ru ue e;
c ca as se e ´n n´:

r re et tu ur rn n f fa al ls se e;
d de ef fa au ul lt t:

c co ou ut t << "I I´l ll l t ta ak ke e t th ha at t f fo or r a a n no o.\ \n n";
r re et tu ur rn n f fa al ls se e;

}
}

A switch-statement tests a value against a set of constants. The case constants must be distinct, and
if the value tested does not match any of them, the d de ef fa au ul lt t is chosen. The programmer need not
provide a d de ef fa au ul lt t.

Few programs are written without loops. In this case, we might like to give the user a few tries:

b bo oo ol l a ac cc ce ep pt t3 3()
{

i in nt t t tr ri ie es s = 1 1;
w wh hi il le e (t tr ri ie es s < 4 4) {

c co ou ut t << "D Do o y yo ou u w wa an nt t t to o p pr ro oc ce ee ed d (y y o or r n n)?\ \n n"; / / write question
c ch ha ar r a an ns sw we er r = 0 0;
c ci in n >> a an ns sw we er r; / / read answer

s sw wi it tc ch h (a an ns sw we er r) {
c ca as se e ´y y´:

r re et tu ur rn n t tr ru ue e;
c ca as se e ´n n´:

r re et tu ur rn n f fa al ls se e;
d de ef fa au ul lt t:

c co ou ut t << "S So or rr ry y, I I d do on n´t t u un nd de er rs st ta an nd d t th ha at t.\ \n n";
t tr ri ie es s = t tr ri ie es s + 1 1;

}
}
c co ou ut t << "I I´l ll l t ta ak ke e t th ha at t f fo or r a a n no o.\ \n n";
r re et tu ur rn n f fa al ls se e;

}

The while-statement executes until its condition becomes f fa al ls se e.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



26 A Tour of C++ Chapter 2

2.3.3 Pointers and Arrays

An array can be declared like this:

c ch ha ar r v v[1 10 0] ; / / array of 10 characters

Similarly, a pointer can be declared like this:

c ch ha ar r* p p; / / pointer to character

In declarations, [] means ‘‘array of’’ and * means ‘‘pointer to.’’ All arrays have 0 0 as their lower
bound, so v v has ten elements, v v[0 0]...v v[9 9]. A pointer variable can hold the address of an object of
the appropriate type:

p p = &v v[3 3] ; / / p points to v’s fourth element

Unary & is the address-of operator.
Consider copying ten elements from one array to another:

v vo oi id d a an no ot th he er r_ _f fu un nc ct ti io on n()
{

i in nt t v v1 1[1 10 0] ;
i in nt t v v2 2[1 10 0] ;
/ / ...
f fo or r (i in nt t i i=0 0; i i<1 10 0; ++i i) v v1 1[i i]=v v2 2[i i] ;

}

This for-statement can be read as ‘‘set i i to zero, while i i is less than 1 10 0, copy the i ith element and
increment i i.’’ When applied to an integer variable, the increment operator ++ simply adds 1 1.

2.4 Modular Programming

Over the years, the emphasis in the design of programs has shifted from the design of procedures
and toward the organization of data. Among other things, this reflects an increase in program size.
A set of related procedures with the data they manipulate is often called a module. The program-
ming paradigm becomes:

Decide which modules you want;
partition the program so that data is hidden within modules.

This paradigm is also known as the data-hiding principle. Where there is no grouping of proce-
dures with related data, the procedural programming style suffices. Also, the techniques for design-
ing ‘‘good procedures’’ are now applied for each procedure in a module. The most common exam-
ple of a module is the definition of a stack. The main problems that have to be solved are:

[1] Provide a user interface for the stack (e.g., functions p pu us sh h() and p po op p()).
[2] Ensure that the representation of the stack (e.g., an array of elements) can be accessed only

through this user interface.
[3] Ensure that the stack is initialized before its first use.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.4 Modular Programming 27

C++ provides a mechanism for grouping related data, functions, etc., into separate namespaces. For
example, the user interface of a S St ta ac ck k module could be declared and used like this:

n na am me es sp pa ac ce e S St ta ac ck k { / / interface
v vo oi id d p pu us sh h(c ch ha ar r) ;
c ch ha ar r p po op p() ;

}

v vo oi id d f f()
{

S St ta ac ck k: :p pu us sh h(´c c´) ;
i if f (S St ta ac ck k: :p po op p() != ́ c c´) e er rr ro or r("i im mp po os ss si ib bl le e") ;

}

The S St ta ac ck k: : qualification indicates that the p pu us sh h() and p po op p() are those from the S St ta ac ck k name-
space. Other uses of those names will not interfere or cause confusion.

The definition of the S St ta ac ck k could be provided in a separately-compiled part of the program:

n na am me es sp pa ac ce e S St ta ac ck k { / / implementation
c co on ns st t i in nt t m ma ax x_ _s si iz ze e = 2 20 00 0;
c ch ha ar r v v[m ma ax x_ _s si iz ze e] ;
i in nt t t to op p = 0 0;

v vo oi id d p pu us sh h(c ch ha ar r c c) { /* check for overflow and push c */ }
c ch ha ar r p po op p() { /* check for underflow and pop */ }

}

The key point about this S St ta ac ck k module is that the user code is insulated from the data representation
of S St ta ac ck k by the code implementing S St ta ac ck k: :p pu us sh h() and S St ta ac ck k: :p po op p(). The user doesn’t need to
know that the S St ta ac ck k is implemented using an array, and the implementation can be changed without
affecting user code. The /* starts a comment that extends to the following */.

Because data is only one of the things one might want to ‘‘hide,’’ the notion of data hiding is
trivially extended to the notion of information hiding; that is, the names of functions, types, etc.,
can also be made local to a module. Consequently, C++ allows any declaration to be placed in a
namespace (§8.2).

This S St ta ac ck k module is one way of representing a stack. The following sections use a variety of
stacks to illustrate different programming styles.

2.4.1 Separate Compilation

C++ supports C’s notion of separate compilation. This can be used to organize a program into a set
of semi-independent fragments.

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. Thus,

n na am me es sp pa ac ce e S St ta ac ck k { / / interface
v vo oi id d p pu us sh h(c ch ha ar r) ;
c ch ha ar r p po op p() ;

}

would be placed in a file s st ta ac ck k.h h, and users will include that file, called a header file, like this:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



28 A Tour of C++ Chapter 2

#i in nc cl lu ud de e "s st ta ac ck k.h h" / / get the interface

v vo oi id d f f()
{

S St ta ac ck k: :p pu us sh h(´c c´) ;
i if f (S St ta ac ck k: :p po op p() != ́ c c´) e er rr ro or r("i im mp po os ss si ib bl le e") ;

}

To help the compiler ensure consistency, the file providing the implementation of the S St ta ac ck k module
will also include the interface:

#i in nc cl lu ud de e "s st ta ac ck k.h h" / / get the interface

n na am me es sp pa ac ce e S St ta ac ck k { / / representation
c co on ns st t i in nt t m ma ax x_ _s si iz ze e = 2 20 00 0;
c ch ha ar r v v[m ma ax x_ _s si iz ze e] ;
i in nt t t to op p = 0 0;

}

v vo oi id d S St ta ac ck k: :p pu us sh h(c ch ha ar r c c) { /* check for overflow and push c */ }

c ch ha ar r S St ta ac ck k: :p po op p() { /* check for underflow and pop */ }

The user code goes in a third file, say u us se er r.c c. The code in u us se er r.c c and s st ta ac ck k.c c shares the stack
interface information presented in s st ta ac ck k.h h, but the two files are otherwise independent and can be
separately compiled. Graphically, the program fragments can be represented like this:

S St ta ac ck k i in nt te er rf fa ac ce e

. .

#i in nc cl lu ud de e " "s st ta ac ck k. .h h" "
u us se e s st ta ac ck k

. .

#i in nc cl lu ud de e " "s st ta ac ck k. .h h" "
d de ef fi in ne e s st ta ac ck k

.
stack.h:

user.c: stack.c:

Separate compilation is an issue in all real programs. It is not simply a concern in programs that
present facilities, such as a S St ta ac ck k, as modules. Strictly speaking, using separate compilation isn’t a
language issue; it is an issue of how best to take advantage of a particular language implementation.
However, it is of great practical importance. The best approach is to maximize modularity, repre-
sent that modularity logically through language features, and then exploit the modularity physically
through files for effective separate compilation (Chapter 8, Chapter 9).

2.4.2 Exception Handling

When a program is designed as a set of modules, error handling must be considered in light of these
modules. Which module is responsible for handling what errors? Often, the module that detects an
error doesn’t know what action to take. The recovery action depends on the module that invoked

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.4.2 Exception Handling 29

the operation rather than on the module that found the error while trying to perform the operation.
As programs grow, and especially when libraries are used extensively, standards for handling errors
(or, more generally, ‘‘exceptional circumstances’’) become important.

Consider again the S St ta ac ck k example. What ought to be done when we try to p pu us sh h() one too
many characters? The writer of the S St ta ac ck k module doesn’t know what the user would like to be
done in this case, and the user cannot consistently detect the problem (if the user could, the over-
flow wouldn’t happen in the first place). The solution is for the S St ta ac ck k implementer to detect the
overflow and then tell the (unknown) user. The user can then take appropriate action. For exam-
ple:

n na am me es sp pa ac ce e S St ta ac ck k { / / interface
v vo oi id d p pu us sh h(c ch ha ar r) ;
c ch ha ar r p po op p() ;

c cl la as ss s O Ov ve er rf fl lo ow w { }; / / type representing overflow exceptions
}

When detecting an overflow, S St ta ac ck k: :p pu us sh h() can invoke the exception-handling code; that is,
‘‘throw an O Ov ve er rf fl lo ow w exception:’’

v vo oi id d S St ta ac ck k: :p pu us sh h(c ch ha ar r c c)
{

i if f (t to op p == m ma ax x_ _s si iz ze e) t th hr ro ow w O Ov ve er rf fl lo ow w() ;
/ / push c

}

The t th hr ro ow w transfers control to a handler for exceptions of type S St ta ac ck k: :O Ov ve er rf fl lo ow w in some function
that directly or indirectly called S St ta ac ck k: :p pu us sh h(). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. Thus, the t th hr ro ow w acts as a mul-
tilevel r re et tu ur rn n. For example:

v vo oi id d f f()
{

/ / ...
t tr ry y { / / exceptions here are handled by the handler defined below

w wh hi il le e (t tr ru ue e) S St ta ac ck k: :p pu us sh h(´c c´) ;
}
c ca at tc ch h (S St ta ac ck k: :O Ov ve er rf fl lo ow w) {

/ / oops: stack overflow; take appropriate action
}
/ / ...

}

The w wh hi il le e loop will try to loop forever. Therefore, the c ca at tc ch h-clause providing a handler for
S St ta ac ck k: :O Ov ve er rf fl lo ow w will be entered after some call of S St ta ac ck k: :p pu us sh h() causes a t th hr ro ow w.

Use of the exception-handling mechanisms can make error handling more regular and readable.
See §8.3, Chapter 14, and Appendix E for further discussion, details, and examples.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



30 A Tour of C++ Chapter 2

2.5 Data Abstraction

Modularity is a fundamental aspect of all successful large programs. It remains a focus of all
design discussions throughout this book. However, modules in the form described previously are
not sufficient to express complex systems cleanly. Here, I first present a way of using modules to
provide a form of user-defined types and then show how to overcome some problems with that
approach by defining user-defined types directly.

2.5.1 Modules Defining Types

Programming with modules leads to the centralization of all data of a type under the control of a
type manager module. For example, if we wanted many stacks – rather than the single one pro-
vided by the S St ta ac ck k module above – we could define a stack manager with an interface like this:

n na am me es sp pa ac ce e S St ta ac ck k {
s st tr ru uc ct t R Re ep p; / / definition of stack layout is elsewhere
t ty yp pe ed de ef f R Re ep p& s st ta ac ck k;

s st ta ac ck k c cr re ea at te e() ; / / make a new stack
v vo oi id d d de es st tr ro oy y(s st ta ac ck k s s) ; / / delete s

v vo oi id d p pu us sh h(s st ta ac ck k s s, c ch ha ar r c c) ; / / push c onto s
c ch ha ar r p po op p(s st ta ac ck k s s) ; / / pop s

}

The declaration

s st tr ru uc ct t R Re ep p;

says that R Re ep p is the name of a type, but it leaves the type to be defined later (§5.7). The declaration

t ty yp pe ed de ef f R Re ep p& s st ta ac ck k;

gives the name s st ta ac ck k to a ‘‘reference to R Re ep p’’ (details in §5.5). The idea is that a stack is identified
by its S St ta ac ck k: :s st ta ac ck k and that further details are hidden from users.

A S St ta ac ck k: :s st ta ac ck k acts much like a variable of a built-in type:

s st tr ru uc ct t B Ba ad d_ _p po op p { };

v vo oi id d f f()
{

S St ta ac ck k: :s st ta ac ck k s s1 1 = S St ta ac ck k: :c cr re ea at te e() ; / / make a new stack
S St ta ac ck k: :s st ta ac ck k s s2 2 = S St ta ac ck k: :c cr re ea at te e() ; / / make another new stack

S St ta ac ck k: :p pu us sh h(s s1 1,´c c´) ;
S St ta ac ck k: :p pu us sh h(s s2 2,´k k´) ;

i if f (S St ta ac ck k: :p po op p(s s1 1) != ́ c c´) t th hr ro ow w B Ba ad d_ _p po op p() ;
i if f (S St ta ac ck k: :p po op p(s s2 2) != ́ k k´) t th hr ro ow w B Ba ad d_ _p po op p() ;

S St ta ac ck k: :d de es st tr ro oy y(s s1 1) ;
S St ta ac ck k: :d de es st tr ro oy y(s s2 2) ;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.5.1 Modules Defining Types 31

We could implement this S St ta ac ck k in several ways. It is important that a user doesn’t need to know
how we do it. As long as we keep the interface unchanged, a user will not be affected if we decide
to re-implement S St ta ac ck k.

An implementation might preallocate a few stack representations and let S St ta ac ck k: :c cr re ea at te e() hand
out a reference to an unused one. S St ta ac ck k: :d de es st tr ro oy y() could then mark a representation ‘‘unused’’
so that S St ta ac ck k: :c cr re ea at te e() can recycle it:

n na am me es sp pa ac ce e S St ta ac ck k { / / representation

c co on ns st t i in nt t m ma ax x_ _s si iz ze e = 2 20 00 0;

s st tr ru uc ct t R Re ep p {
c ch ha ar r v v[m ma ax x_ _s si iz ze e] ;
i in nt t t to op p;

};

c co on ns st t i in nt t m ma ax x = 1 16 6; / / maximum number of stacks

R Re ep p s st ta ac ck ks s[m ma ax x] ; / / preallocated stack representations
b bo oo ol l u us se ed d[m ma ax x] ; / / used[i] is true if stacks[i] is in use

t ty yp pe ed de ef f R Re ep p& s st ta ac ck k;
}

v vo oi id d S St ta ac ck k: :p pu us sh h(s st ta ac ck k s s, c ch ha ar r c c) { /* check s for overflow and push c */ }

c ch ha ar r S St ta ac ck k: :p po op p(s st ta ac ck k s s) { /* check s for underflow and pop */ }

S St ta ac ck k: :s st ta ac ck k S St ta ac ck k: :c cr re ea at te e()
{

/ / pick an unused Rep, mark it used, initialize it, and return a reference to it
}

v vo oi id d S St ta ac ck k: :d de es st tr ro oy y(s st ta ac ck k s s) { /* mark s unused */ }

What we have done is to wrap a set of interface functions around the representation type. How the
resulting ‘‘stack type’’ behaves depends partly on how we defined these interface functions, partly
on how we presented the representation type to the users of S St ta ac ck ks, and partly on the design of the
representation type itself.

This is often less than ideal. A significant problem is that the presentation of such ‘‘fake types’’
to the users can vary greatly depending on the details of the representation type – and users ought to
be insulated from knowledge of the representation type. For example, had we chosen to use a more
elaborate data structure to identify a stack, the rules for assignment and initialization of
S St ta ac ck k: :s st ta ac ck ks would have changed dramatically. This may indeed be desirable at times. How-
ever, it shows that we have simply moved the problem of providing convenient stacks from the
S St ta ac ck k module to the S St ta ac ck k: :s st ta ac ck k representation type.

More fundamentally, user-defined types implemented through a module providing access to an
implementation type don’t behave like built-in types and receive less and different support than do
built-in types. For example, the time that a S St ta ac ck k: :R Re ep p can be used is controlled through
S St ta ac ck k: :c cr re ea at te e() and S St ta ac ck k: :d de es st tr ro oy y() rather than by the usual language rules.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



32 A Tour of C++ Chapter 2

2.5.2 User-Defined Types

C++ attacks this problem by allowing a user to directly define types that behave in (nearly) the
same way as built-in types. Such a type is often called an abstract data type. I prefer the term
user-defined type. A more reasonable definition of abstract data type would require a mathemati-
cal ‘‘abstract’’ specification. Given such a specification, what are called types here would be con-
crete examples of such truly abstract entities. The programming paradigm becomes:

Decide which types you want;
provide a full set of operations for each type.

Where there is no need for more than one object of a type, the data-hiding programming style using
modules suffices.

Arithmetic types such as rational and complex numbers are common examples of user-defined
types. Consider:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r, d do ou ub bl le e i i) { r re e=r r; i im m=i i; } / / construct complex from two scalars
c co om mp pl le ex x(d do ou ub bl le e r r) { r re e=r r; i im m=0 0; } / / construct complex from one scalar
c co om mp pl le ex x() { r re e = i im m = 0 0; } / / default complex: (0,0)

f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, c co om mp pl le ex x) ;
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r-(c co om mp pl le ex x, c co om mp pl le ex x) ; / / binary
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r-(c co om mp pl le ex x) ; / / unary
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r*(c co om mp pl le ex x, c co om mp pl le ex x) ;
f fr ri ie en nd d c co om mp pl le ex x o op pe er ra at to or r/(c co om mp pl le ex x, c co om mp pl le ex x) ;

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x, c co om mp pl le ex x) ; / / equal
f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co om mp pl le ex x, c co om mp pl le ex x) ; / / not equal
/ / ...

};

The declaration of class (that is, user-defined type) c co om mp pl le ex x specifies the representation of a com-
plex number and the set of operations on a complex number. The representation is private; that is,
r re e and i im m are accessible only to the functions specified in the declaration of class c co om mp pl le ex x. Such
functions can be defined like this:

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a1 1, c co om mp pl le ex x a a2 2)
{

r re et tu ur rn n c co om mp pl le ex x(a a1 1.r re e+a a2 2.r re e,a a1 1.i im m+a a2 2.i im m) ;
}

A member function with the same name as its class is called a constructor. A constructor defines a
way to initialize an object of its class. Class c co om mp pl le ex x provides three constructors. One makes a
c co om mp pl le ex x from a d do ou ub bl le e, another takes a pair of d do ou ub bl le es, and the third makes a c co om mp pl le ex x with a
default value.

Class c co om mp pl le ex x can be used like this:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.5.2 User-Defined Types 33

v vo oi id d f f(c co om mp pl le ex x z z)
{

c co om mp pl le ex x a a = 2 2.3 3;
c co om mp pl le ex x b b = 1 1/a a;
c co om mp pl le ex x c c = a a+b b*c co om mp pl le ex x(1 1,2 2.3 3) ;
/ / ...
i if f (c c != b b) c c = -(b b/a a)+2 2*b b;

}

The compiler converts operators involving c co om mp pl le ex x numbers into appropriate function calls. For
example, c c!=b b means o op pe er ra at to or r!=(c c,b b) and 1 1/a a means o op pe er ra at to or r/(c co om mp pl le ex x(1 1) ,a a).

Most, but not all, modules are better expressed as user-defined types.

2.5.3 Concrete Types

User-defined types can be designed to meet a wide variety of needs. Consider a user-defined S St ta ac ck k
type along the lines of the c co om mp pl le ex x type. To make the example a bit more realistic, this S St ta ac ck k type
is defined to take its number of elements as an argument:

c cl la as ss s S St ta ac ck k {
c ch ha ar r* v v;
i in nt t t to op p;
i in nt t m ma ax x_ _s si iz ze e;

p pu ub bl li ic c:
c cl la as ss s U Un nd de er rf fl lo ow w { }; / / used as exception
c cl la as ss s O Ov ve er rf fl lo ow w { }; / / used as exception
c cl la as ss s B Ba ad d_ _s si iz ze e { }; / / used as exception

S St ta ac ck k(i in nt t s s) ; / / constructor
˜S St ta ac ck k() ; / / destructor

v vo oi id d p pu us sh h(c ch ha ar r c c) ;
c ch ha ar r p po op p() ;

};

The constructor S St ta ac ck k(i in nt t) will be called whenever an object of the class is created. This takes
care of initialization. If any cleanup is needed when an object of the class goes out of scope, a com-
plement to the constructor – called the destructor – can be declared:

S St ta ac ck k: :S St ta ac ck k(i in nt t s s) / / constructor
{

t to op p = 0 0;
i if f (s s<0 0 || 1 10 00 00 00 0<s s) t th hr ro ow w B Ba ad d_ _s si iz ze e() ; / / "" means "or"
m ma ax x_ _s si iz ze e = s s;
v v = n ne ew w c ch ha ar r[s s] ; / / allocate elements on the free store (heap, dynamic store)

}

S St ta ac ck k: :˜S St ta ac ck k() / / destructor
{

d de el le et te e[] v v; / / free the elements for possible reuse of their space (§6.2.6)
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



34 A Tour of C++ Chapter 2

The constructor initializes a new S St ta ac ck k variable. To do so, it allocates some memory on the free
store (also called the heap or dynamic store) using the n ne ew w operator. The destructor cleans up by
freeing that memory. This is all done without intervention by users of S St ta ac ck ks. The users simply
create and use S St ta ac ck ks much as they would variables of built-in types. For example:

S St ta ac ck k s s_ _v va ar r1 1(1 10 0) ; / / global stack with 10 elements

v vo oi id d f f(S St ta ac ck k& s s_ _r re ef f, i in nt t i i) / / reference to Stack
{

S St ta ac ck k s s_ _v va ar r2 2(i i) ; / / local stack with i elements
S St ta ac ck k* s s_ _p pt tr r = n ne ew w S St ta ac ck k(2 20 0) ; / / pointer to Stack allocated on free store

s s_ _v va ar r1 1.p pu us sh h(´a a´) ; / / access through variable (§5.7)
s s_ _v va ar r2 2.p pu us sh h(´b b´) ;
s s_ _r re ef f.p pu us sh h(´c c´) ; / / access through reference (§5.5, §5.7)
s s_ _p pt tr r->p pu us sh h(´d d´) ; / / access through pointer (§5.7)
/ / ...

}

This S St ta ac ck k type obeys the same rules for naming, scope, allocation, lifetime, etc., as does a built-in
type such as i in nt t and c ch ha ar r. For details on how to control the lifetime of an object, see §10.4.

Naturally, the p pu us sh h() and p po op p() member functions must also be defined somewhere:

v vo oi id d S St ta ac ck k: :p pu us sh h(c ch ha ar r c c)
{

i if f (t to op p == m ma ax x_ _s si iz ze e) t th hr ro ow w O Ov ve er rf fl lo ow w() ;
v v[t to op p] = c c;
t to op p = t to op p + 1 1;

}

c ch ha ar r S St ta ac ck k: :p po op p()
{

i if f (t to op p == 0 0) t th hr ro ow w U Un nd de er rf fl lo ow w() ;
t to op p = t to op p - 1 1;
r re et tu ur rn n v v[t to op p] ;

}

Types such as c co om mp pl le ex x and S St ta ac ck k are called concrete types, in contrast to abstract types, where the
interface more completely insulates a user from implementation details.

2.5.4 Abstract Types

One property was lost in the transition from S St ta ac ck k as a ‘‘fake type’’ implemented by a module
(§2.5.1) to a proper type (§2.5.3). The representation is not decoupled from the user interface;
rather, it is a part of what would be included in a program fragment using S St ta ac ck ks. The representa-
tion is private, and therefore accessible only through the member functions, but it is present. If it
changes in any significant way, a user must recompile. This is the price to pay for having concrete
types behave exactly like built-in types. In particular, we cannot have genuine local variables of a
type without knowing the size of the type’s representation.

For types that don’t change often, and where local variables provide much-needed clarity and
efficiency, this is acceptable and often ideal. However, if we want to completely isolate users of a

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.5.4 Abstract Types 35

stack from changes to its implementation, this last S St ta ac ck k is insufficient. Then, the solution is to
decouple the interface from the representation and give up genuine local variables.

First, we define the interface:

c cl la as ss s S St ta ac ck k {
p pu ub bl li ic c:

c cl la as ss s U Un nd de er rf fl lo ow w { }; / / used as exception
c cl la as ss s O Ov ve er rf fl lo ow w { }; / / used as exception

v vi ir rt tu ua al l v vo oi id d p pu us sh h(c ch ha ar r c c) = 0 0;
v vi ir rt tu ua al l c ch ha ar r p po op p() = 0 0;

};

The word v vi ir rt tu ua al l means ‘‘may be redefined later in a class derived from this one’’ in Simula and
C++. A class derived from S St ta ac ck k provides an implementation for the S St ta ac ck k interface. The curious
=0 0 syntax says that some class derived from S St ta ac ck k must define the function. Thus, this S St ta ac ck k can
serve as the interface to any class that implements its p pu us sh h() and p po op p() functions.

This S St ta ac ck k could be used like this:

v vo oi id d f f(S St ta ac ck k& s s_ _r re ef f)
{

s s_ _r re ef f.p pu us sh h(´c c´) ;
i if f (s s_ _r re ef f.p po op p() != ́ c c´) t th hr ro ow w B Ba ad d_ _p po op p() ;

}

Note how f f() uses the S St ta ac ck k interface in complete ignorance of implementation details. A class
that provides the interface to a variety of other classes is often called a polymorphic type.

Not surprisingly, the implementation could consist of everything from the concrete class S St ta ac ck k
that we left out of the interface S St ta ac ck k:

c cl la as ss s A Ar rr ra ay y_ _s st ta ac ck k : p pu ub bl li ic c S St ta ac ck k { / / Array_stack implements Stack
c ch ha ar r* p p;
i in nt t m ma ax x_ _s si iz ze e;
i in nt t t to op p;

p pu ub bl li ic c:
A Ar rr ra ay y_ _s st ta ac ck k(i in nt t s s) ;
˜A Ar rr ra ay y_ _s st ta ac ck k() ;

v vo oi id d p pu us sh h(c ch ha ar r c c) ;
c ch ha ar r p po op p() ;

};

The ‘‘:p pu ub bl li ic c’’ can be read as ‘‘is derived from,’’ ‘‘implements,’’ and ‘‘is a subtype of.’’
For a function like f f() to use a S St ta ac ck k in complete ignorance of implementation details, some

other function will have to make an object on which it can operate. For example:

v vo oi id d g g()
{

A Ar rr ra ay y_ _s st ta ac ck k a as s(2 20 00 0) ;
f f(a as s) ;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



36 A Tour of C++ Chapter 2

Since f f() doesn’t know about A Ar rr ra ay y_ _s st ta ac ck ks but only knows the S St ta ac ck k interface, it will work just as
well for a different implementation of a S St ta ac ck k. For example:

c cl la as ss s L Li is st t_ _s st ta ac ck k : p pu ub bl li ic c S St ta ac ck k { / / List_stack implements Stack
l li is st t<c ch ha ar r> l lc c; / / (standard library) list of characters (§3.7.3)

p pu ub bl li ic c:
L Li is st t_ _s st ta ac ck k() { }

v vo oi id d p pu us sh h(c ch ha ar r c c) { l lc c.p pu us sh h_ _f fr ro on nt t(c c) ; }
c ch ha ar r p po op p() ;

};

c ch ha ar r L Li is st t_ _s st ta ac ck k: :p po op p()
{

c ch ha ar r x x = l lc c.f fr ro on nt t() ; / / get first element
l lc c.p po op p_ _f fr ro on nt t() ; / / remove first element
r re et tu ur rn n x x;

}

Here, the representation is a list of characters. The l lc c.p pu us sh h_ _f fr ro on nt t(c c) adds c c as the first element of
l lc c, the call l lc c.p po op p_ _f fr ro on nt t() removes the first element, and l lc c.f fr ro on nt t() denotes l lc c’s first element.

A function can create a L Li is st t_ _s st ta ac ck k and have f f() use it:

v vo oi id d h h()
{

L Li is st t_ _s st ta ac ck k l ls s;
f f(l ls s) ;

}

2.5.5 Virtual Functions

How is the call s s_ _r re ef f.p po op p() in f f() resolved to the right function definition? When f f() is called
from h h(), L Li is st t_ _s st ta ac ck k: :p po op p() must be called. When f f() is called from g g(),
A Ar rr ra ay y_ _s st ta ac ck k: :p po op p() must be called. To achieve this resolution, a S St ta ac ck k object must contain
information to indicate the function to be called at run-time. A common implementation technique
is for the compiler to convert the name of a v vi ir rt tu ua al l function into an index into a table of pointers to
functions. That table is usually called ‘‘a virtual function table’’ or simply, a v vt tb bl l. Each class with
virtual functions has its own v vt tb bl l identifying its virtual functions. This can be represented graphi-
cally like this:

p p
m ma ax x_ _s si iz ze e

t to op p

. .
A Ar rr ra ay y_ _s st ta ac ck k::p pu us sh h()

A Ar rr ra ay y_ _s st ta ac ck k::p po op p()

v vt tb bl l: : A Ar rr ra ay y_ _s st ta ac ck k o ob bj je ec ct t: :
..

l lc c

. .
L Li is st t_ _s st ta ac ck k::p pu us sh h()

L Li is st t_ _s st ta ac ck k::p po op p()

v vt tb bl l: : L Li is st t_ _s st ta ac ck k o ob bj je ec ct t: :
..

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.5.5 Virtual Functions 37

The functions in the v vt tb bl l allow the object to be used correctly even when the size of the object and
the layout of its data are unknown to the caller. All the caller needs to know is the location of the
v vt tb bl l in a S St ta ac ck k and the index used for each virtual function. This virtual call mechanism can be
made essentially as efficient as the ‘‘normal function call’’ mechanism. Its space overhead is one
pointer in each object of a class with virtual functions plus one v vt tb bl l for each such class.

2.6 Object-Oriented Programming

Data abstraction is fundamental to good design and will remain a focus of design throughout this
book. However, user-defined types by themselves are not flexible enough to serve our needs. This
section first demonstrates a problem with simple user-defined data types and then shows how to
overcome that problem by using class hierarchies.

2.6.1 Problems with Concrete Types

A concrete type, like a ‘‘fake type’’ defined through a module, defines a sort of black box. Once
the black box has been defined, it does not really interact with the rest of the program. There is no
way of adapting it to new uses except by modifying its definition. This situation can be ideal, but it
can also lead to severe inflexibility. Consider defining a type S Sh ha ap pe e for use in a graphics system.
Assume for the moment that the system has to support circles, triangles, and squares. Assume also
that we have

c cl la as ss s P Po oi in nt t{ /* ... */ };
c cl la as ss s C Co ol lo or r{ /* ... */ };

The /* and */ specify the beginning and end, respectively, of a comment. This comment notation
can be used for multi-line comments and comments that end before the end of a line.

We might define a shape like this:

e en nu um m K Ki in nd d { c ci ir rc cl le e, t tr ri ia an ng gl le e, s sq qu ua ar re e }; / / enumeration (§4.8)

c cl la as ss s S Sh ha ap pe e {
K Ki in nd d k k; / / type field
P Po oi in nt t c ce en nt te er r;
C Co ol lo or r c co ol l;
/ / ...

p pu ub bl li ic c:
v vo oi id d d dr ra aw w() ;
v vo oi id d r ro ot ta at te e(i in nt t) ;
/ / ...

};

The ‘‘type field’’ k k is necessary to allow operations such as d dr ra aw w() and r ro ot ta at te e() to determine
what kind of shape they are dealing with (in a Pascal-like language, one might use a variant record
with tag k k). The function d dr ra aw w() might be defined like this:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



38 A Tour of C++ Chapter 2

v vo oi id d S Sh ha ap pe e: :d dr ra aw w()
{

s sw wi it tc ch h (k k) {
c ca as se e c ci ir rc cl le e:

/ / draw a circle
b br re ea ak k;

c ca as se e t tr ri ia an ng gl le e:
/ / draw a triangle
b br re ea ak k;

c ca as se e s sq qu ua ar re e:
/ / draw a square
b br re ea ak k;

}
}

This is a mess. Functions such as d dr ra aw w() must ‘‘know about’’ all the kinds of shapes there are.
Therefore, the code for any such function grows each time a new shape is added to the system. If
we define a new shape, every operation on a shape must be examined and (possibly) modified. We
are not able to add a new shape to a system unless we have access to the source code for every
operation. Because adding a new shape involves ‘‘touching’’ the code of every important operation
on shapes, doing so requires great skill and potentially introduces bugs into the code that handles
other (older) shapes. The choice of representation of particular shapes can get severely cramped by
the requirement that (at least some of) their representation must fit into the typically fixed-sized
framework presented by the definition of the general type S Sh ha ap pe e.

2.6.2 Class Hierarchies

The problem is that there is no distinction between the general properties of every shape (that is, a
shape has a color, it can be drawn, etc.) and the properties of a specific kind of shape (a circle is a
shape that has a radius, is drawn by a circle-drawing function, etc.). Expressing this distinction and
taking advantage of it defines object-oriented programming. Languages with constructs that allow
this distinction to be expressed and used support object-oriented programming. Other languages
don’t.

The inheritance mechanism (borrowed for C++ from Simula) provides a solution. First, we
specify a class that defines the general properties of all shapes:

c cl la as ss s S Sh ha ap pe e {
P Po oi in nt t c ce en nt te er r;
C Co ol lo or r c co ol l;
/ / ...

p pu ub bl li ic c:
P Po oi in nt t w wh he er re e() { r re et tu ur rn n c ce en nt te er r; }
v vo oi id d m mo ov ve e(P Po oi in nt t t to o) { c ce en nt te er r = t to o; /* ... */ d dr ra aw w() ; }

v vi ir rt tu ua al l v vo oi id d d dr ra aw w() = 0 0;
v vi ir rt tu ua al l v vo oi id d r ro ot ta at te e(i in nt t a an ng gl le e) = 0 0;
/ / ...

};

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.6.2 Class Hierarchies 39

As in the abstract type S St ta ac ck k in §2.5.4, the functions for which the calling interface can be defined
– but where the implementation cannot be defined yet – are v vi ir rt tu ua al l. In particular, the functions
d dr ra aw w() and r ro ot ta at te e() can be defined only for specific shapes, so they are declared v vi ir rt tu ua al l.

Given this definition, we can write general functions manipulating vectors of pointers to shapes:

v vo oi id d r ro ot ta at te e_ _a al ll l(v ve ec ct to or r<S Sh ha ap pe e*>& v v, i in nt t a an ng gl le e) / / rotate v’s elements angle degrees
{

f fo or r (i in nt t i i = 0 0; i i<v v.s si iz ze e() ; ++i i) v v[i i]->r ro ot ta at te e(a an ng gl le e) ;
}

To define a particular shape, we must say that it is a shape and specify its particular properties
(including the virtual functions):

c cl la as ss s C Ci ir rc cl le e : p pu ub bl li ic c S Sh ha ap pe e {
i in nt t r ra ad di iu us s;

p pu ub bl li ic c:
v vo oi id d d dr ra aw w() { /* ... */ }
v vo oi id d r ro ot ta at te e(i in nt t) {} / / yes, the null function

};

In C++, class C Ci ir rc cl le e is said to be derived from class S Sh ha ap pe e, and class S Sh ha ap pe e is said to be a base of
class C Ci ir rc cl le e. An alternative terminology calls C Ci ir rc cl le e and S Sh ha ap pe e subclass and superclass, respec-
tively. The derived class is said to inherit members from its base class, so the use of base and
derived classes is commonly referred to as inheritance.

The programming paradigm is:

Decide which classes you want;
provide a full set of operations for each class;

make commonality explicit by using inheritance.

Where there is no such commonality, data abstraction suffices. The amount of commonality
between types that can be exploited by using inheritance and virtual functions is the litmus test of
the applicability of object-oriented programming to a problem. In some areas, such as interactive
graphics, there is clearly enormous scope for object-oriented programming. In other areas, such as
classical arithmetic types and computations based on them, there appears to be hardly any scope for
more than data abstraction, and the facilities needed for the support of object-oriented programming
seem unnecessary.

Finding commonality among types in a system is not a trivial process. The amount of common-
ality to be exploited is affected by the way the system is designed. When a system is designed –
and even when the requirements for the system are written – commonality must be actively sought.
Classes can be designed specifically as building blocks for other types, and existing classes can be
examined to see if they exhibit similarities that can be exploited in a common base class.

For attempts to explain what object-oriented programming is without recourse to specific pro-
gramming language constructs, see [Kerr,1987] and [Booch,1994] in §23.6.

Class hierarchies and abstract classes (§2.5.4) complement each other instead of being mutually
exclusive (§12.5). In general, the paradigms listed here tend to be complementary and often

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



40 A Tour of C++ Chapter 2

mutually supportive. For example, classes and modules contain functions, while modules contain
classes and functions. The experienced designer applies a variety of paradigms as need dictates.

2.7 Generic Programming

Someone who wants a stack is unlikely always to want a stack of characters. A stack is a general
concept, independent of the notion of a character. Consequently, it ought to be represented inde-
pendently.

More generally, if an algorithm can be expressed independently of representation details and if
it can be done so affordably and without logical contortions, it ought to be done so.

The programming paradigm is:

Decide which algorithms you want;
parameterize them so that they work for

a variety of suitable types and data structures.

2.7.1 Containers

We can generalize a stack-of-characters type to a stack-of-anything type by making it a template
and replacing the specific type c ch ha ar r with a template parameter. For example:

t te em mp pl la at te e<c cl la as ss s T T> c cl la as ss s S St ta ac ck k {
T T* v v;
i in nt t m ma ax x_ _s si iz ze e;
i in nt t t to op p;

p pu ub bl li ic c:
c cl la as ss s U Un nd de er rf fl lo ow w { };
c cl la as ss s O Ov ve er rf fl lo ow w { };

S St ta ac ck k(i in nt t s s) ; / / constructor
˜S St ta ac ck k() ; / / destructor

v vo oi id d p pu us sh h(T T) ;
T T p po op p() ;

};

The t te em mp pl la at te e<c cl la as ss s T T> prefix makes T T a parameter of the declaration it prefixes.
The member functions might be defined similarly:

t te em mp pl la at te e<c cl la as ss s T T> v vo oi id d S St ta ac ck k<T T>: :p pu us sh h(T T c c)
{

i if f (t to op p == m ma ax x_ _s si iz ze e) t th hr ro ow w O Ov ve er rf fl lo ow w() ;
v v[t to op p] = c c;
t to op p = t to op p + 1 1;

}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.7.1 Containers 41

t te em mp pl la at te e<c cl la as ss s T T> T T S St ta ac ck k<T T>: :p po op p()
{

i if f (t to op p == 0 0) t th hr ro ow w U Un nd de er rf fl lo ow w() ;
t to op p = t to op p - 1 1;
r re et tu ur rn n v v[t to op p] ;

}

Given these definitions, we can use stacks like this:

S St ta ac ck k<c ch ha ar r> s sc c(2 20 00 0) ; / / stack of 200 characters
S St ta ac ck k<c co om mp pl le ex x> s sc cp pl lx x(3 30 0) ; / / stack of 30 complex numbers
S St ta ac ck k< l li is st t<i in nt t> > s sl li i(4 45 5) ; / / stack of 45 lists of integers

v vo oi id d f f()
{

s sc c.p pu us sh h(´c c´) ;
i if f (s sc c.p po op p() != ́ c c´) t th hr ro ow w B Ba ad d_ _p po op p() ;

s sc cp pl lx x.p pu us sh h(c co om mp pl le ex x(1 1,2 2)) ;
i if f (s sc cp pl lx x.p po op p() != c co om mp pl le ex x(1 1,2 2)) t th hr ro ow w B Ba ad d_ _p po op p() ;

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates. A class
holding a collection of elements of some type is commonly called a container class, or simply a
container.

Templates are a compile-time mechanism so that their use incurs no run-time overhead com-
pared to ‘‘hand-written code.’’

2.7.2 Generic Algorithms

The C++ standard library provides a variety of containers, and users can write their own (Chapter 3,
Chapter 17, Chapter 18). Thus, we find that we can apply the generic programming paradigm once
more to parameterize algorithms by containers. For example, we want to sort, copy, and search
v ve ec ct to or rs, l li is st ts, and arrays without having to write s so or rt t(), c co op py y(), and s se ea ar rc ch h() functions for each
container. We also don’t want to convert to a specific data structure accepted by a single sort func-
tion. Therefore, we must find a generalized way of defining our containers that allows us to manip-
ulate one without knowing exactly which kind of container it is.

One approach, the approach taken for the containers and non-numerical algorithms in the C++
standard library (§3.8, Chapter 18) is to focus on the notion of a sequence and manipulate
sequences through iterators.

Here is a graphical representation of the notion of a sequence:

begin end

...
. . . . . ..

..

. . . . . . .....
elements:

A sequence has a beginning and an end. An iterator refers to an element, and provides an operation
that makes the iterator refer to the next element of the sequence. The end of a sequence is an

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



42 A Tour of C++ Chapter 2

iterator that refers one beyond the last element of the sequence. The physical representation of
‘‘the end’’ may be a sentinel element, but it doesn’t have to be. In fact, the point is that this notion
of sequences covers a wide variety of representations, including lists and arrays.

We need some standard notation for operations such as ‘‘access an element through an iterator’’
and ‘‘make the iterator refer to the next element.’’ The obvious choices (once you get the idea) are
to use the dereference operator * to mean ‘‘access an element through an iterator’’ and the incre-
ment operator ++ to mean ‘‘make the iterator refer to the next element.’’

Given that, we can write code like this:

t te em mp pl la at te e<c cl la as ss s I In n, c cl la as ss s O Ou ut t> v vo oi id d c co op py y(I In n f fr ro om m, I In n t to oo o_ _f fa ar r, O Ou ut t t to o)
{

w wh hi il le e (f fr ro om m != t to oo o_ _f fa ar r) {
*t to o = *f fr ro om m; / / copy element referred to
++t to o; / / next output
++f fr ro om m; / / next input

}
}

This copies any container for which we can define iterators with the right syntax and semantics.
C++’s built-in, low-level array and pointer types have the right operations for that, so we can

write

c ch ha ar r v vc c1 1[2 20 00 0] ; / / array of 200 characters
c ch ha ar r v vc c2 2[5 50 00 0] ; / / array of 500 characters

v vo oi id d f f()
{

c co op py y(&v vc c1 1[0 0] ,&v vc c1 1[2 20 00 0] ,&v vc c2 2[0 0]) ;
}

This copies v vc c1 1 from its first element until its last into v vc c2 2 starting at v vc c2 2’s first element.
All standard library containers (§16.3, Chapter 17) support this notion of iterators and

sequences.
Two template parameters I In n and O Ou ut t are used to indicate the types of the source and the target

instead of a single argument. This was done because we often want to copy from one kind of con-
tainer into another. For example:

c co om mp pl le ex x a ac c[2 20 00 0] ;

v vo oi id d g g(v ve ec ct to or r<c co om mp pl le ex x>& v vc c, l li is st t<c co om mp pl le ex x>& l lc c)
{

c co op py y(&a ac c[0 0] ,&a ac c[2 20 00 0] ,l lc c.b be eg gi in n()) ;
c co op py y(l lc c.b be eg gi in n() ,l lc c.e en nd d() ,v vc c.b be eg gi in n()) ;

}

This copies the array to the l li is st t and the l li is st t to the v ve ec ct to or r. For a standard container, b be eg gi in n() is an
iterator pointing to the first element.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



Section 2.8 Postscript 43

2.8 Postscript

No programming language is perfect. Fortunately, a programming language does not have to be
perfect to be a good tool for building great systems. In fact, a general-purpose programming lan-
guage cannot be perfect for all of the many tasks to which it is put. What is perfect for one task is
often seriously flawed for another because perfection in one area implies specialization. Thus, C++
was designed to be a good tool for building a wide variety of systems and to allow a wide variety of
ideas to be expressed directly.

Not everything can be expressed directly using the built-in features of a language. In fact, that
isn’t even the ideal. Language features exist to support a variety of programming styles and tech-
niques. Consequently, the task of learning a language should focus on mastering the native and
natural styles for that language – not on the understanding of every little detail of all the language
features.

In practical programming, there is little advantage in knowing the most obscure language fea-
tures or for using the largest number of features. A single language feature in isolation is of little
interest. Only in the context provided by techniques and by other features does the feature acquire
meaning and interest. Thus, when reading the following chapters, please remember that the real
purpose of examining the details of C++ is to be able to use them in concert to support good pro-
gramming style in the context of sound designs.

2.9 Advice

[1] Don’t panic! All will become clear in time; §2.1.
[2] You don’t have to know every detail of C++ to write good programs; §1.7.
[3] Focus on programming techniques, not on language features; §2.1.

.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.



44 A Tour of C++ Chapter 2

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 2000 by AT&T.
Published by Addison Wesley, Inc. ISBN 0-201-70073-5. All rights reserved.


